
NRL Report 5683

C,

4-l

rsr
lz:

IDEAL LIMITING
PART 1 - THE EFFECT OF IDEAL LIMITING

ON SIGNALS AND ON NOISE

S. F. George and J. W. Wood

Radar Division

October 2, 1961

U. S. NAVAL RESEARCH LABORATORY
Washington. D.C.

'j .- , 6-

A.



Current Reports in This Series

"Part 1 - The Effect of Ideal Limiting on Signals and on

Noise," S. F. George and J. W. Wood, NRL Report 5683,
September 1961

"Part 2 - The Operation of an Ideal Limiter on Signals

Imbedded in Noise,' S. F. George and J. W. Wood, NRL
Report 5684, September 1961



CONTENTS

Abstract ii
Problem Status ii
Authorization

INTRODUCTION 1

THE IDEAL LIMITER 1

PART I. SIGNALS ALONE 2

Single Sine-Wave Input 2
Input Consisting of Two Sine Waves 4

PART H. NOISE ALONE 8

Input of Band-Limited White Noise 10
White Noise Through Single-Tuned Circuit 12
Bandpass Filter 13

REFERENCES 18

APPENDIX A - Evaluation of Contour Integral 19

APPENDIX B - Calculation for the Case of
Band-Limited White Noise 21

i



ABSTRACT

The effect of hard clipping or ideal limiting on sine-wave sig-
nals and on shaped, Gaussian-noise inputs is considered. For a
single sine wave, the limiter reproduces the fundamental fre-
quency and creates odd harmonics of rapidly decreasing relative
power. For two sine-wave inputs of equal amplitudes, the limiter
generates arrays of beat frequencies centered symmetrically
about the two input frequencies and their shifted odd harmonics.
If the two inputs are of unequal amplitude, the stronger signal
suppresses the weaker. On shaped, wide-band Gaussian noise,
the limiter tends to broaden the high-frequency end of the spec-
trum slightly and to produce a flat, low-frequency, random-noise
response.

PROBLEM STATUS

The work reported applies to problems involved in the analog-
digital conversion of data for the U. S. Naval Space Surveillance
System. This is the first of two reports on this phase of the prob-
lem; work on other phases continues.

AUTHORIZATION

NRL Problem R02-82
ARPA Order 7-58

Manuscript submitted July 17, 1961.
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IDEAL LIMITING

PART I - THE EFFECT OF IDEAL LIMITING
ON SIGNALS AND ON NOISE

INTRODUCTION

Although the general theory for nonlinear devices has been exhaustively studied (1)
and the spectral changes in clipped, rectangular-shaped noise have been worked out (2-4),
the need still remained for a concise engineering examination of the results of limiting
signals and the effect of limiting more practical shapes of filtered noise. The purpose of
this work is to determine what a limiter does to two sine waves of different frequencies
and amplitudes and how shaped, Gaussian noise is altered by clipping. The general method
used will follow Davenport and Root (la) for handling nonlinear devices. A second report
will treat the more practical case of sine-wave signals embedded in Gaussian noise.

THE IDEAL LIMITER

A limiter is a device which truncates the amplitude of a signal at a given value. By
setting this amplitude very close to zero and then amplifying the resulting signal an ideal
limiter can be approximated (Fig. 1). In terms of the amplification characteristics, an
ideal limiter is approached as e tends to zero and as the actual curve approaches its
asymptotes (Fig. 2).
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Fig. 1 - Illustration of limited signal
and ideal limiter
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OUTPUT VOLTAGE

INPUT

VOLTAGE

Fig. 2 - Output voltage vs input
v o l t a g e for a limiter. Solid
lines represent the ideal case,
dotted line a possible limiter
characteristic.

PART I. SIGNALS ALONE

Single Sine-Wave Input

The general approach to the solution of this problem is through the Laplace transform.

Let g(x) be the transfer characteristic of the limiter and f(w) be the transfer function or
bilateral Laplace transform of g(x). The bilateral transform must be used since x is not

restricted in range to x > 0 as is t in the more conventional unilateral Laplace transform.
We then have

-J~(x) e~X xf(co) =f g(x) e dx (1)

u+jf

g(x) 27Tj f() eX d (2)

where the value of u in the contour integral must be properly defined.

In the case at hand, that of an ideal limiter (c = 0), we can define g(x) as follows:

g(x) = +a,

g(x) = 0,

g(x) = -a,

x > 0

x = 0

x < 0 (3)

so that we have a corresponding separation of f(c) into f+(w) where x >0 and f_ (c) where

x < o with different regions of convergence. Here

f+(-) = ae dx, Re(co) > 0 (4)

where, for the inverse transformation, the contour of integration over f+(w), C+, must be
a line c = e + jv with E >0 and -o < v < c. Also,

f (W) = 0 (- a) e-wx dx,

i_ -

It

I
* -a

and

2

(5)Re(wL) < O



NAVAL RESEARCH LABORATORY 3

where C_ must be a line w = - e + jv with E >0 and -x < v < co. Evaluation of these integrals
yields

f (c) = fU() = a (6)

Now for the input to the limiter let us use

x - x(t) = V cos c)It -- V cos 6,

and redefine g(x) by g(x) = g[x(t)] - y(t), where we will assume v to be constant and e = wit.
The output y(t) of the limiter will then be

y( t ) a J 7 j |a) dCs + 2 | C.) ewv .
eIJ - j Wx_ - e- j OD

(7)

This reduces to

Ja E e=v cos t _ e-V cos t7

y 277 J j co dc .
(8)

By the Jacobi-Anger formula,

ez cost7 = 6 
1

m Im(z) Cos mO

m=0

where Sm is the Neumann factor, £o - 1,
function of the first kind. Whence,

a
7 = a S. Cos me

m=0

Fm = 2 (m >0), and Im(z) is the modified Bessel

(9)

Now I.(-z) = (-1)m Im(z); therefore,

{s+ im Im(Z) dz

8- j M

(10)y = a21 [I (- 1)M] FM Cos m 1
m=O

where we have let z = wV and 8 = EV. Integrals of the form of Eq. (10) have been evaluated
by Davenport (lb) with the result

IJ= 1 ij Imf z) dz = 1 fjw Imf z) dI -_ d__ 8 z_ dz.
- jm d J z

(11)

C

4~ec i

pm'

E+jm Im(wv) IM(-Cov)- dw .

f - j M I co W I



NAVAL RESEARCH LABORATORY

Using the relation Im(jx) = jm Jm(x) we reduce this to

I = ~-~{ Jm'~)dx,

which is easily seen to yield

I = 2I~j[1 -(- 1)] I J_ dx. (12)
27T j I J

Now the expression j'[1 - (- l)m] yields zero for all even values of m and yields ±2j for odd
values. This can be written as

jm [1 - (-1)m] = 2j sin-2

Also, the integral in Eq. (12) can be evaluated by using Weber's infinite integral (5a) given
as

r0 J,(t) F('2) (13)tv -j+ 2v-A8 rI- 2+ 1

Here, if we let v= m, t = x and i= m, we have the integral of Eq. (12); thus,

J m(x) = V_)_ = 1 (14)
I m dx -= _ _ _ _ _

2F (2+ 1)

Finally, then, we have

I mT sin (15)

The final output in Eq. (10) is

Y 4a ' sin 2 cos mMwt . (16)
m=l

This series expansion, which of course corresponds to the harmonic content of a square
wave, is plotted in Fig. 3. Here, the relative power content at the discrete frequencies
is shown versus frequency, based on an input frequency of 1 kc and a clipping level of unity.

Input Consisting of Two Sine Waves

To determine the limiter output for the case where the input consists of two sine waves
of different frequencies, the same general theory applies. Here, however,

x - x(t) = V1 cos Colt + V2 cos cd2 t = V1 cos el + V2 cos 82

4

(17)
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Fig. 3 - Output power spectrum of ideal limiter
for a single sine-wave input

where V1 = V2 only as a special case. Substituting this expression in
output becomes

Eq. (8), the limiter

a C a jOD da { (VI v cos 1 +v2 cos062) (VI 0 +v2 Cos 0
f- co few -e(V 2)

Again applying the Jacobi-Anger formula, this expression reduces to

Z - ( n] T(W.IE. En COS M 0vl)2I (cV)
m = O n = O [- cs

The problem then is to evaluate the contour integral.

It is shown in Appendix A that

r+jim IM(WVln(COV2) m+ n
[ m4nn] Jfm (XJV ( 2 )n(XV2 x

IC ji = n 1-(-1) J. dx.

5

c:

r-b

rrZ.:

0

0
0L

F-
wj

(18)

(19)

(20)
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In terms of Eq. (20), the output from Eq. (19) then becomes

a 7'\~~~[in~.n] mn fi i(XVI) Jn(XV2)

Y = LE iEn [ (-l) J sin 2 cos mcoit cos n&)2 tx dx (21)
0=o n=o

1. Special Case: V1 V2 = V.

The integral in Eq. (21) becomes a special case of the Weber-Schafheitlin integral (5b),

in 2~~~~~~i (v.1
dt 2 iW ~ L)7(22)

i10 (at) J (at) -t = - 2

where a = V1 = V2. Using this in Eq. (21) we obtain the final result

a v v()m+nl 2 (m + n)7r . (m - n)7r

Y -,2 Tm=O= E rn-n 2 2sin 2

x {cos (mcoj +nf 2 )t + cos (mil ~-nf 2 )t} (23)

As can be seen, terms exist only when (m + n) is an odd integer. Table 1 shows values of

the relative amplitude of the harmonics in the limiter output (Eq. (23)) for a partial set

of values of m and n, where the two sine waves are 1 kc and 1.001 kc and a = 1. The power
spectrum is plotted in Fig. 4.

2. General Case: V1 > V2

In the general case for V1 > V2 we have by Sonine and Schafheitlin (5c)

i J(at) J,(bt) d b-(2 2) 2F1 ( 1,2 " 2 (24)

0 ~~~~~~2a'I(v + 1) -( I+ 2 - 2Y) 2a2

for a > b. Substituting this in Eq. (21) we obtain the final result

a)_ T.m(-) An -lm n) -\ S. m+n

y = 47 ~ E 1r()sin 2
m=0 n=0 F(n +l) F ( + m-2n)

x 2F1 ( 22n , n ; 2) [cos (mwd.+ nC)2 )t + cos (mw, - nw 2)t] (25)

where X = (V2N 1) < 1 and

ab z a(a+l1) b(b+l1) z2

2F1 (a, b; c; z) = 1 + cb z-! + c(c + 1) 2!

We note that this does not hold for the limiting case V1 = V2. In order to obtain an idea of

how this function looks we plot (Fig. 5) the relative power output at the two fundamental

frequencies as a function of the parameter x where V1/V2 = x/(1 - x). For x = 0 or 1, the

single signal case is obtained. As x 0.5, the previous V1 = V2 case is approached.

6
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Table 1
Partial List of m and n Values Used to Evaluate
the Output of a Limiter (Eq. (23)) for the Special
Case V1 = V2 = V; m + n = Odd Integer; a = 1

m |n F tput lative Amplitude Output Power

5 4 996 0.090 0.008

4 3 997 -0.116 0.013

3 2 998 0.162 0.026

2 1 999 -0.270 0.073

1 0 1000 0.811 0.658

0 1 1001 0.811 0.658

1 2 1002 -0.270 0.073

2 3 1003 0.162 0.026

3 4 1004 -0.116 0.013

4 5 1005 0.090 0.008

3 0 3000 0.090 0.008

2 1 3001 -0.270 0.073

1 2 3002 -0.270 0.073

0 3 3003 0.090 0.008

4 1 5001 -0.054 0.003

3 2 5002 0.162 0.026

2 3 5003 0.162 0.026

1 4 5004 -0.054 0.003

I.2

1.0 _-

a:

H

0

-j
U,

Fig. 4 - Output p o w e r
spectrum of ideal limiter
for input consisting of
two sine waves of equal
amplitude
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VI: V2 X: (I-X)

1.62 * _

1.5

SIGNAL \a__ruc frn
AROUND ~ ~ AROUND WI

a.
H 1.0

0 W~~~~~~~~~~~~~

a.5

effect oftheideallimiterFig. 5 -hPower output at two fun-
The gnrmeh ofdlnwtrao nidamental frequencies for input
t mconsisting of two sine waves with

/ ~~~~~~varying amplitude ratio

0.1/

0 0.2 0.4 0.6 0.8 1.0

RATIO OF INPUT SIGNALS

In Fig. 6 the full spectrum is shown for the case k= 0. 5 (x~ 0. 333) . Table 2 tabulates
these results. Comparing Figs. 4 and 6, and also in Fig. 5, we note the strong attenuation
effect of the ideal limiter on the weaker of two signals.

PART IL. NOISE ALONE

The general method of dealing with random noise is to use the Fourier cosine trans-
form. Given an input power spectrum G(od), the correlation function R(,r) is the Fourier
transform of G(co) given by

R(J) G(cd) cos Cdr dco (26)

where ' is the time delay. The normalized correlation function is

p(r) = R(O) (27)
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CLIPPING
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998 1000 1002 2999 3001 5001 5003
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Fig. 6 - Output power spectrum of ideal
limiter for input consisting of two sine
waves of unequal amplitude

Table 2
Partial List of m and n Values Used to Evaluate the Output of a
Limiter (Eq. (25)) for the Special Case v1 = 2V2, or X = 0.5;
m + n = Odd Integer; a = 1

m| n| Output Frequency Relative Amplitude ] Output Power

3 2 998 0.106 0.011
2 1 999 -0.287 0.082
1 0 1000 1.189 1.414
0 1 1001 0.329 0.108
1 2 1002 -0.0426 0.002

4 1 2999 -0.181 0.033
3 0 3000 -0.208 0.043
2 1 3001 -0.287 0.082
1 2 3002 -0.0426 0.002

5 0 5000 -0.0212 0.000
4 1 5001 0.181 0.033
3 2 5002 0.106 0.011

9 C.
r,

4..

4'.

I!
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The correlation function of the output is then (4)

a2 2 sin 1 {p(r)}, (28)
7T

and the output is the inverse transform of this

4
E(cd) = -4a2 sin- {p(r)} cos cuT dT (29)

To evaluate this integral we have expanded

sin~ x = x+x3 + 3.5 +

sin-IX= X +6 40

Input of Band-Limited White Noise

The first case is band-limited white noise with infinitely steep skirts. This is an
ideal, theoretical case which cannot be achieved in practice. The input is a constant
amplitude distribution of frequencies over a given range (Fig. 7).

G(Cd) = Cd0 - C < C < Co + Cda (30)

We are considering the special case where 0 , the center frequency, is three times Coa.

the half-power frequency. In this case the Fourier transform of the input G(C) is

C0 a

R('r) K cos adr dco

sin WaT
= K cos Cdor

jar

and

R(0) = K,

so

p(r) sin coj W r.(31)
a '

The output power spectrum is then

E(Cd) = - | cos sin os cdor} dr (32)
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AMPL ITUDE I

- - - ~I 11 1

Fig. 7 - Illustration of ideal, band-
limited white noise with infinitely
steep skirts ( 0Uo Wa

Iwo

Expanding the sin 1, the first term will be

4 W sin J '
,Cos w0r c a dr

,i2 WaV

=-2 jeCos (a- 0 )r sin doar + 2 Cos ()+ )r sin cadr
soar r 2 I Wo a o0r d

= II + I2.

These integrals can each be expanded using 2 sinA cos B = sin (A + B) + sin (A - B) . The
second integral 12 is found to be zero. For I we have

I 0,

I1 = 1
0a

C O.

co < coo - fL)a

DO - Ca < 0 < coo + 0a

0 o0 + CiJa < W -

(33)

The first term of the output is plotted in Fig. 8. The second term can be calculated by
similar methods and is found also to have no dc component (that is, E(Zo) = 0 for co = 0).
The first two terms are plotted in Fig. 9. The maximum contribution of the second term
is about 1/10 of the first. The third term is found to be about 1/10 the second. The
second term also has a second peak at 3w3. The third term has a dc component which is
about 6 x 10 4 times the peak value of the first term. In the more usual case where
c»o >> coa dc components do not appear until much later terms and are negligibly small.

S TERM OUTPUT

Wo-wa I
10)o

Fig. 8 - Plot of the first term in
the equation for the power output
spectrum of the band-limited

FREQUENCY white noise

C~
A::E

C'
r-

11

'o + W0

rr
t7.':

FREQUENCY

Wo+ 0a
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0.6
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0 'Oa wo W 1o
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Fig. 9 - Effect of ideal limiting on the spec-
trum of band-limited white noise with infinitely
steep skirts

White Noise Through Single-Tuned Circuit

As a second case of noise input we will consider the input represented by

G(co) = K +

+(C 0) )

K

(0+ ) 2

(' a )a

(34)

which could result from passing white noise through a single-tuned circuit. Here C0 is
the center frequency and c&j is the half-bandwidth. We find

R(r) = K CaT7 e cos d0 T

p(r) = e cos C0 T .

The power-spectrum output from an ideal limiter is then

(35)

E(C) = 42 Xcos CT sinl {e A cos CdO r dT .

(- *Id 0 -%C w< a%+w 6INPUT-~~I .I (do,) -2 % W WO+"
INPUT - 0 M= ~t, ELSEWHERE

I I

-OUTPUT ____. FIRST TERM. -
T~ai

- SECOND TERM

_~~~~~~~~~~~~ __I

and

12

-

(36)
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Using the first three terms of the sin- 1 expansion this integral was reduced to integrals
of the form

0o

I e- Aw IIcos (w) - q oj)0r d7-

which were evaluated. Note that both input and output signals have a dc component
(Figs. 10, 13, and 14).

0.3

0.2

0.1

0

0 Wa to Wo 0o (o +Wo 0-- .

Fig. 10 - Effect of ideal limiting on the spectrum of white noise
passed through a single-tuned circuit

Bandpass Filter

As the third case, consider three types of input noise provided by passing noise from
some random source through a low-pass filter followed by a high-pass filter. The respec-
tive attenuations for these filters are given by

A -= I Zu 1 = I

lot I+ j (_~T`)
1

1 + ( W)2

CdW

i-71

A' = C0

1 + j (7+)

c::
C-

r-
4..,

4,'

re

3

CD

3P

= (so )

F -1 +

(37)

Wi
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-I SLOPE

0.1

0.1 I 10

0.1
Fig. 11 - Illustration of the char-
acteristics of a low-pass and a
high-pass filter

The characteristics of these two filters are summarized in Fig. 11. Filters of this

type are said to have a characteristic of ±1 because of the slope of the asymptotes. When

two filters follow each other (but are isolated to prevent interaction), the total attenuation

is the product of the two attenuations. Letting Cdo = naCd, we have

A

AT = AA' = ~ w

_/ a) 2 nO

The power spectrum is

G(Cd) = AT = ( ° )2] [ ( ° ) A] (

Expanding this by partial fractions we get

G(cd) = K

1 + ( U)

(38)

(39)

(40)K

1 + (

where K is an amplification factor given by K = 1/(n2 - 1). Figure 12 shows the attenua-
tion curve of this combination for n = 10.

-1H

Fig. 12 - Attenuation curve for a
high-pass and a low-pass filter
in combination

0.1

10 100

Type 1: Choosing n = 10 for G(C)) (as above) we have

R(T) = K 7T co0 [10e'1
0

wo- _e- wor]

p(r) = 10 e 10 WIT - nIr
9 9

(41)

I

14
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and

E(C) = ± Jcos CdT sin- f 1
0 e- 10 T eO} dIT (42)

0

We now expand the sin-', producing integrals of the form

fXe cos xIT dr where x = Cd/C 0

While the input has no dc component, the output does have a dc component and is level
over the low-frequency end up to about /C0 = 0. 1. This filter-limiter system can provide
constant-amplitude, white noise over the low-frequency end of the spectrum (see Figs. 13
and 14).*

Type 2: As another case we take

G(Cd) = [- +( )] (43)

which may be thought of as an intermediate condition between the band-limited white noise
and the previous case which had a characteristic of ±1. The characteristic of G(Cd) above
is a band-pass filter with skirt asymptotes of ±2.

As before, we have

R(-r) = coo 410 ( 1 + T 10 U01 ) e ° (1 +r "JO) e r

p(IT) 10 r) -10 wor - (l e T (44)

and

E(Cd) = 72 |cos CdT sin 1 9(1 + 10(I + C0I) e }d , (45)

Expanding the sin. 1 we get integrals of the same type as in the previous case and inte-
grals of the form

f: Tne-ar cos XIT dT

which can be found in Bierens de Haan (7).

*This effect was reported in "L. F. Random Signal Generator," J. L. Douce, and
J. M. Shackleton, Electronic and Radio Engineering, August 1958, pp. 295-297.
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Again, there is no dc component in the input. The output, normalized to have a peak
value equal to the previous case, has a dc component, about 2.5 db lower, which is flat
until d/C0 = 0.02.

We see then that, as the skirts of the attenuation characteristic become steeper, the
dc component of the output and the range over which it is flat decrease, the limiting
case being the band-limited noise input (see Figs. 13 and 14).

Type 3: Finally we will consider the input

G(Cd) = ) K o ) (46)

which is the same as type 1 except that now n = 2. We have

R(IT) = 2Cd - e -C dc 7T e-e

p(IT) = 2e -e (47)

and

E(Cd) = J 4 cos CdT sin' I2e -2Or _ f~°j d, (48)

which we evaluate as before.

This result is essentially the same as type 1. The dc output level is slightly lower
and the peak has moved to the right. The output is still flat within 1.5 db up to cd/coo = 0. 1
(see Figs. 13 and 14).

In the following input and output spectrum plots, the input amplification constant K
has been chosen to make rG(Cd)do) = 1 and, consequently, R(O) = 1. It should be noted that
the total output power P. is independent of the input power and depends only on the limiter
voltage a; P. - f E(cd) dco = a2. In the plots we have chosen a = 1. The inputs of the type

G(Cd) L + (+)j - +

have been plotted in db (down from peak power) vs frequency. For p = 1,

G(Cd) = and n =

For p = 2, the expressions are more complicated; for n = 10, G(co)max 0. 8847 and
C/cQ = 1.954.

16
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0.01 0.1 10
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Fig. 13 - Input spectra of white noise passed through
various band-pass filters

0.01 0.1 10

oJ

Fig. 14 - Output spectra after ideal limiting
of band-pass fjlter inputs
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APPENDIX A

EVALUATION OF CONTOUR INTEGRAL

From Eq. (19) of the text, the following contour integral must be evaluated

= J + j[ Im(Cd0Vl) In(CdV 2 )

I - j M 0

over the contour shown in Fig. Al.

iv

+J +

C3

aE
Fig. Al - Contour integration paths
for the evaluation of I in Eq. (Al)

w=u+jv PLANE

For c = u + jv, let the contour integration be divided as follows:

E+j/ Im(CdVl) In(CdV 2 )

I= e - 3s6 j do

I2 =-f Im(CidVl) In(CdV2 ) dcd,

6 + i ,s

''i IM(CdV 1) In(C)V 2 )
13 J =Cjdn dco ,

14 = feA -i Im(CdVI) In(CV 2 ) dw,
I 4 L J dB

c = u- j,8 (A2)

19
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where 1 becomes I as 8 o. Now we have (6)

1TmZ ... Yi) k! F (m +k +l1)
k=0

(A3)

so that Im(CVl) I,(CV 2) varies as Cdm+n for small Cd. Since m and n cannot both be zero for
our particular problem, the singularity in the integrand of I at the origin vanishes, and
hence by Cauchy

(A4)II + I2 - I3 + I4 = 0 .

To show that I 2 = 0, we first write Im(z) for large I z I as (lc)

I (z) - e
m -2- z

Along c2, cd = U + j/3, so for large 8 we find

(A5)

JA Im(CdVl) In(CdV2 ) e j'(v 1 +v2 )
I12 = Cd dCd =

fj+ U(2 V+V1 V2
TIoeu (v1 +v2)

e ~~du .
(U + j/8) 2

1 0 eu(v1+v2)

II 21 < 7 V e 8 du - 0 as 83 -a.

A similar argument shows 14= o, and hence II = I3. Therefore, as ,s ao

I =Ji I m(dV1) In(CV 2 ) d

By letting cd = jx, and recalling that Im(jx) = jmlm(x), we see that

I j m+n 0 Jm(xv1) Jn(XV2 ) d + +n Im(XVi) Jn(XV 2 ) d

m+n{m Jm(\XV1 ) Jn(JxV2 ) d + jm+n Jm(XV1) Jn(XV2) dx.

But Jm.(x) = (-l)mjm(x), and so, finally,

m+n [-(_l)m+n] | Jm(xVI) Jn(XV2 ) dx

I I x~~~

J6- il I( IdV1 ) I -CV2)

f_- jM c

(A6)
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APPENDIX B C

CALCULATION FOR THE CASE OF
BAND-LIMITED WHITE NOISE

In the text we said that

E(W) = 4 sin- {p(IT)} cos Cdr dT (A7)

and the results of evaluating this integral were stated. As an example of the methods used
we shall now perform the calculation for the case of band-limited white noise where

sin CaT
p(IT) -= a ( Cd0 T (AB)

We can write

E(cd) = Tk for k odd (A9)
k=-

where

Tk = 4 Ck 7Pk(IT) cos CT dIT. (A10)

and

1 3

We have first

Ti = 4 p(T) cos carT dT . (All)

Using trigonometric identities

sin Cd Ir

Wcos osW
Cd IT CO 0IToT COS CWITaar

1 sin CdT

2 Cda- T {Cos (Cd + Cd
0
)T + COS (C - Cdo)

= {sin (cd + Cd0 + C)d)T - sin (cd + cdi - Cd)Tr
4ca

+ sin (I - a) + Ca) - sin (ct d - do - ),)T} (A12)

21
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m

T 1 = 2 7' .lf &)a f

IT

mco 2 ' a > 0Udx _

Jsin ax - =
0 x T a< 0

2 '

T1 = 2 IT
a

+1, -1;

-1, +1;

+1, -1;

-1, +1;

d + Cdo
0

+ Cd > °, < 0

cd+ cd
0

- Ca > 0, <0

Co o + Cd > 0° < 0

c -Cd-o C da > 0 <0

which yields
1

I7Td ' 0'o - a < Cd < C0 + Cd

T 0 = .
0 0, elsewhere.
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Then,

Now

so

(A13)

(A14)

(A15)


